Wednesday, November 25, 2009

Wheelchair with Vision

This smart wheelchair has laser vision
Spletzer, an associate professor of computer science and engineering, recently received a five-year CAREER Award from the National Science Foundation (NSF) to develop a robotic wheelchair that navigates on its own, with no human guidance or remote control, through a crowded city.

Armed with high-fidelity lasers and detailed maps, the “smart” wheelchair will avoid stationery objects like parking meters and light poles as well as “random events” like pedestrians and bicyclists. It will transport users who may not be able to see or walk to their doctor’s appointments, to the pharmacy, to the grocery store.
Helping robots see with lasers

In order to “see” and respond to its environment as it navigates around a city, says Spletzer, a robot must possess two things: sensors that detect and recognize familiar landmarks and a database with maps that show where those landmarks will be.

Spletzer and his students have taken a cue from Google Street View, which allows Internet users to take virtual tours of distant cities, block by block and building by building, by looking at thousands of stored images. These images are of little use to robots equipped with lasers, says Spletzer, because robots do not see what humans see. But the concept is applicable to the robotic wheelchair. Spletzer and his students are fitting the robotic wheelchair with a low cost LIDAR (an acronym for light detection and ranging) laser similar to, but much less expensive than, those that enabled Little Ben to detect other vehicles, highway lane markers and the edge of the pavement. They have made high-fidelity, 3-D laser maps of portions of South Bethlehem and of the Stabler Arena parking lot on Lehigh’s Goodman Campus. The team’s robotic wheelchair, guided by LIDAR but not GPS devices, has traversed a 1-kilometer route and arrived at its destination to within an accuracy of 20 centimeters.

“We have a server vehicle drive around and make a hi-fi 3-D map of the environment,” says Spletzer. “The robotic wheelchair can download this map and navigate the environment, halfway in the real world, halfway in the virtual world.

“The robot identifies landmarks—trees, poles, building faces and corners—in the real world and looks for them in the laser map. Once it finds them, it will be able to accurately estimate its position in the real world. It doesn’t need GPS, because of the accuracy of the server vehicle maps and because of the LIDARs.”

Read more at: http://www.physorg.com/news177062541.html

No comments:

Post a Comment